山东职校招生网为同学们提供了全面了解各类职业学校的招生信息途径,小编为大家整理了关于《 0是自然数吗为什么》的详细内容,0是自然数吗为什么 自然数信息仅供参考,如有变动,请以相关学校官方最新消息为准。
本文目录一览:
- 1、“0”为什么也是自然数?
- 2、0为什么是一个自然数
- 3、为什么0是自然数
- 4、0是自然数吗为什么
“0”为什么也是自然数?
“0”是否包括在自然数之内存在争议,有人认为自然数为正整数,即从1开始算起;而也有人认为自然数为非负整数,即从0开始算起。目前关于这个问题尚无一致意见。不过,在数论中,多采用前者;在集合论中,则多采用后者。 国外的数学界大部分都规定0是自然数。
为了国际交流的方便,1993年颁布的《中华人民共和国国家标准》(GB3100~3102-93)《量和单位》(11-2.9)第311页,规定自然数包括0。但是,在小学阶段的“整除”部分,仍然不考虑自然数0,因而在约数、倍数等概念中都不包括0。另外,一般情况下我们不说数0是几位数,所以最小的一位数是1。 并且零(即0)是一个自然形成的数字,应该规划与“自然数”。
我国传统的教科书所说的腊空自然数都是指正整数。在国外,有些国家的教科书是把0也算作自然数的。这本是一种人为的规定,我国为了推行国际标准化组织 (ISO)制定的国际标准,定义自然数集包含元素0,也是为了早日和国际接轨。 现行九年义务教育教科书和高级中学教科书(试验修订本)都把非负整数集也叫做自然数集,记作N,而正整数集记作N+或N*。这就一改以往0不是自然数的说法,明确指御禅出0也是自然数集的一个元素。
自然数用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4,??所表示的数。表示物体个数的数叫自然数,自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,轮拆瞎合数和质数等。
中文名:自然数
外文名:Natural number
分 类:数学
又 称:非负整数
性 质:有序性 无限性
分 为:偶数奇数,合数质数
0为什么是一个自然数
在过去的中小学数学教学中,数字“0”一直不属于自然数,但是现在已明确把“0”归于自然数。为什么有这样的变化?作为数学教师必须清楚。许多数学工作者都认为这仅仅是一个“规定”,用数学的行话讲即“定义”,这就是说以前定义“1,2,3,…,n…”为自然数集,而现在则定义“0,1,2,3,…,n…”为自然数集。显然这样的解释是不够的,下面谈谈笔者的理解。
1?自然数的功能
自然数是人类最早认识并用之描述自然界数量关系的数学概念。一开始它就有三个基本功能:一是基数功能,用来刻画某一类事物的多少,用现代集合论的语言来说,就是描述有限集的基数;二是序数功能,用来刻画某一类事物的顺序,用现代集合论的语言来说,就是描述有限集中元素的顺序性质;第三个是运算功能,自然数可以做加法和乘法,这些运算用来描述自然界中事物之间的数量关系,随着对运算的深入研究,使我们进一步又建立了整数、有理数、实数、复数及其运算,这样我们对自然界事物的数量关系的描述更加完整和精细。
2?为什么要把“0”作为自然数
我们从自然数的功能上回答这个问题。
第一、“0”不是自然数时,其基数功能不完整。我们知道“空集”是最基本的集合,也是我们描述周围现象时常用到的集合概念,在集合论中用专门的符号“Φ”表示。例如方程x2+1=0的实根集合就是一个空集。有了空集的概念后,我们可以用公理化的方法给出所有自然数的定义。首先,对任意集合A,我们定义A+=A∪{A}为集合A的后继。其次,定义:0=Φ;1=0+=Φ∪{Φ}={Φ};2=1+={Φ}∪{{Φ}}={Φ,{Φ}};3=2+={Φ,{Φ}}∪{{Φ,{Φ}}}={Φ,{Φ},{Φ,{Φ}}};……从这个定义可以看出,每个自然数可看作一个集合的名称。在日常生活中,我们常用数出集合元素数目的办法来判断有限集中元素的个数,这实际上是在所给集合与某个自然数表示的集合之间建立一个一 一对应。所以用集合论的观点,我们可给出有限集及其元素个数的严格定义如下:“设A是一个集合,若在A与自然数集N的某个元素n之间存在一 一对应,则称A为有限集(否则称为无限集,即A不能与任一自然数n建立一 一对应时,称A为无限集),且称n为集合A的基数或势(即通常所说的集合的元素个数)”。把空集划分为有限集是很自然的。但当“0”不是自然数时,就没有一个自然数可表示空集的基数,这样不管从日常生活的语义上,还是上述严格定义上,自然数描述有限集基数的功能均不完整;反之,可用“0”表示空集的基数,则“所有自然数”就可以完整刻画“所有有限集元素的多少”这一任务。这样我们从自然数的基数功能说明了把“0”作为自然数的好处。
第二、我们还要说明,把“0”作为自然数,不会影响其“序数功能”与“运算功能”。
首先,在集合论中,常常要讨论元素之间的序关系,并根据序关系的性质将集合分为“偏序集”、“线性序集”、“良序集”等,序关系为我们提供了一种比较集合中元素的手段,在日常生活中有广泛的应用。自然数的序关系具有比较好的性质,这些性质通常是用关系运算“≤、≥、、、=、≠”来描述的。我们说“0”作为自然数,是不会影响其“序数功能”的。
在“顺序”方面,除了上述性质外,自然数还有一种特殊的性质,这也是自然数区别于整数集、有理数集、实数集的本质性质,即“自然数的任一非空子集中,一定有最小的数”,也就是说自然数集还是一个良序集。尽管整数集、有理数集、实数集都是线性序集,但它们不具有自然数的特殊性质。例如,所有负整数是整数集的子集,但它无最小数。又如区间 (0,1)作为实数集的非空子集也没有最小数,而区间 (0,1)内所有有理数构成的集合作为有理数集的非空子集也没有最小数。自然数的这一特殊性质是保证数学归谨毕纳法成立的基本性质。
很明显,不管“0”是否归于自然数集,上面讨论的自然数的“顺序”性质都成立,当然也包括那种兆晌乎特殊性质。实质上没有“0”的自然数集与包括“0”的自然数集可以在下面的对应规则下看作是“完全一样”的:n→n+1,从代数学的观点来看它们是“同构”的。这样我们说明了把“0”作为自然数,不会影响其“序数功能”。
3?结论
既然“0”加盟到自然数集合中,只有好处,没有坏处,我们为什么不欢迎“0”作为自然数集合的一个成员呢?即“0”作为自然数是理所当然的,而不族悉仅仅是一种“规定”。这可帮助我们更好地理解自然数和它的功能,也可帮助我们养成一个良好的习惯,即学习一个数学概念时,不但要记住和理解“定义”和“规定”,还要思考这些“定义”和“规定”后面的数学含义。
为什么0是自然数
0是自然数
从历史上看,国内和国外对于0是不是自然数历来有两种规定:一种规定0是自然数,另一种规定0不是自然数。建国以来,我们国家的中小学教材一直规定自然数集合不包括0。
现在,国外的数学界,大部分都是规定0是自然数,为了国如毁际交流的方便,《国家标准》中规定,自然数集包括0。因此,在我们新出版的教材中,按照《国家标准》进行了这样的处理,原来的自然亏明数集合现在称为正整数集。同时,我们也按照国家标准的规定规范使用了一些数学符号的表示方法。
从使用上看,规定自然数集合是否包括0并无太大影响。作为序数,从0开始和从1开始是一样的;以前我们所说的n∈N,现在只要说n是正整数就可销橡告以了。
可参考国家技术监督局发布的《中华人民共和国国家标准——量和单位》(GB3100-3102-93,1993/12/27发布,1994/07/01实施)
0是自然数吗为什么
0是属于自然数,0加入传统的自然数集合,所有的运算规则依旧保持,如新自然数集合{0,1,2,,n,}中的任何两个自然数都可以进行加法和乘法运算,而运算结果仍然是自然数。同时,加法、乘法运算的结合律和交换律,以及乘法的分配律也不会受到影响。
但是,对于0,它是否包括在自然数之内存在争议,有人认为自然数为正整数,即从1开始算起;而也有人认为自然数为非负整数,即从消指0开始算起。到21世纪关于这个问题也尚无一致意见。
在国外,有些GJ的教科书是把0也则桥碰算作自然数的。这本是一种人为的规定,我国为了推行国际标准化组织(ISO)制定的国际标准,定义自然数集包含元素0,也是为了早日和孙谈国际接轨。
如果您对 0是自然数吗为什么的详细介绍有相关问题或对以上山东职业学校感兴趣,可以在下面提交您的信息,以便专业的择校老师一对一指导您,选择更适合自己的职业学校。